Compact System

  • Subscribe to our RSS feed.
  • Twitter
  • StumbleUpon
  • Reddit
  • Facebook
  • Digg

Thursday, 27 June 2013

Fast, Accurate Detection of 100,000 Object Classes on a Single Machine

Posted on 10:00 by Unknown
Posted by Tom Dean, Google Research

Humans can distinguish among approximately 10,000 relatively high-level visual categories, but we can discriminate among a much larger set of visual stimuli referred to as features. These features might correspond to object parts, animal limbs, architectural details, landmarks, and other visual patterns we don’t have names for, and it is this larger collection of features we use as a basis with which to reconstruct and explain our day-to-day visual experience. Such features provide the components for more complicated visual stimuli and establish a context essential for us to resolve ambiguous scenes.

Contrary to current practice in computer vision, the explanatory context required to resolve a visual detail may not be entirely local. A flash of red bobbing along the ground might be a child’s toy in the context of a playground or a rooster in the context of a farmyard. It would be useful to have a large number of feature detectors capable of signaling the presence of such features, including detectors for sandboxes, swings, slides, cows, chickens, sheep and farm machinery necessary to establish the context for distinguishing between these two possibilities.

This year’s winner of the CVPR Best Paper Award, co-authored by Googlers Tom Dean, Mark Ruzon, Mark Segal, Jonathon Shlens, Sudheendra Vijayanarasimhan and Jay Yagnik, describes technology that will enable computer vision systems to extract the sort of semantically rich contextual information required to recognize visual categories even when a close examination of the pixels spanning the object in question might not be sufficient for identification in the absence of such contextual clues. Specifically, we consider a basic operation in computer vision that involves determining for each location in an image the degree to which a particular feature is likely to be present in the image at that particular location.

This so-called convolution operator is one of the key operations used in computer vision and, more broadly, all of signal processing. Unfortunately, it is computationally expensive and hence researchers use it sparingly or employ exotic SIMD hardware like GPUs and FPGAs to mitigate the computational cost. We turn things on their head by showing how one can use fast table lookup — a method called hashing — to trade time for space, replacing the computationally-expensive inner loop of the convolution operator — a sequence of multiplications and additions — required for performing millions of convolutions with a single table lookup.

We demonstrate the advantages of our approach by scaling object detection from the current state of the art involving several hundred or at most a few thousand of object categories to 100,000 categories requiring what would amount to more than a million convolutions. Moreover, our demonstration was carried out on a single commodity computer requiring only a few seconds for each image. The basic technology is used in several pieces of Google infrastructure and can be applied to problems outside of computer vision such as auditory signal processing.

On Wednesday, June 26, the Google engineers responsible for the research were awarded Best Paper at a ceremony at the IEEE Conference on Computer Vision and Pattern Recognition held in Portland Oregon. The full paper can be found here.
Email ThisBlogThis!Share to XShare to Facebook
Posted in Publications | No comments
Newer Post Older Post Home

0 comments:

Post a Comment

Subscribe to: Post Comments (Atom)

Popular Posts

  • CDC Birth Vital Statistics in BigQuery
    Posted by Dan Vanderkam, Software Engineer Google’s BigQuery Service lets enterprises and developers crunch large-scale data sets quickly...
  • Towards Energy-Proportional Datacenters
    Posted by Dennis Abts, Michael R. Marty, Philip M. Wells, Peter Klausler, and Hong Liu This is part of the series highlighting some notable...
  • Site Reliability Engineers: “solving the most interesting problems”
    Posted by Chris Reid, Sydney Staffing team I recently sat down with Ben Appleton, a Senior Staff Software Engineer, to talk about his recent...
  • Our Faculty Institute brings faculty back to the drawing board
    Posted by Nina Kim Schultz, Google Education Research Cross-posted with the Official Google Blog School may still be out for summer, but tea...
  • Market Algorithms and Optimization Meeting
    Posted by  Vahab S. Mirrokni and Muthu Muthukrishnan Google auctions ads, and enables a market with millions of advertisers and users.  This...
  • Our Unique Approach to Research
    Posted by  Alfred Spector , Vice President of Research and Special Initiatives Google started as a research project —and research has remain...
  • Impact of Organic Ranking on Ad Click Incrementality
    Posted by David Chan, Statistician and Lizzy Van Alstine, Research Evangelist  In 2011, Google released a Search Ads Pause research study w...
  • Large-scale graph computing at Google
    Posted by Grzegorz Czajkowski, Systems Infrastructure Team If you squint the right way, you will notice that graphs are everywhere. For exam...
  • Continuing the quest for future computer scientists with CS4HS
    Erin Mindell, Program Manager, Google Education Computer Science for High School (CS4HS) began five years ago with a simple question: How c...
  • Millions of Core-Hours Awarded to Science
    Posted by Andrea Held, Program Manager, University Relations In 2011 Google University Relations launched a new academic research awards pr...

Categories

  • accessibility
  • ACL
  • ACM
  • Acoustic Modeling
  • ads
  • adsense
  • adwords
  • Africa
  • Android
  • API
  • App Engine
  • App Inventor
  • Audio
  • Awards
  • Cantonese
  • China
  • Computer Science
  • conference
  • conferences
  • correlate
  • crowd-sourcing
  • CVPR
  • datasets
  • Deep Learning
  • distributed systems
  • Earth Engine
  • economics
  • Education
  • Electronic Commerce and Algorithms
  • EMEA
  • EMNLP
  • entities
  • Exacycle
  • Faculty Institute
  • Faculty Summit
  • Fusion Tables
  • gamification
  • Google Books
  • Google+
  • Government
  • grants
  • HCI
  • Image Annotation
  • Information Retrieval
  • internationalization
  • Interspeech
  • jsm
  • jsm2011
  • K-12
  • Korean
  • Labs
  • localization
  • Machine Hearing
  • Machine Learning
  • Machine Translation
  • MapReduce
  • market algorithms
  • Market Research
  • ML
  • MOOC
  • NAACL
  • Natural Language Processing
  • Networks
  • Ngram
  • NIPS
  • NLP
  • open source
  • operating systems
  • osdi
  • osdi10
  • patents
  • ph.d. fellowship
  • PiLab
  • Policy
  • Public Data Explorer
  • publication
  • Publications
  • renewable energy
  • Research Awards
  • resource optimization
  • Search
  • search ads
  • Security and Privacy
  • SIGMOD
  • Site Reliability Engineering
  • Speech
  • statistics
  • Structured Data
  • Systems
  • Translate
  • trends
  • TV
  • UI
  • University Relations
  • UNIX
  • User Experience
  • video
  • Vision Research
  • Visiting Faculty
  • Visualization
  • Voice Search
  • Wiki
  • wikipedia
  • WWW
  • YouTube

Blog Archive

  • ▼  2013 (51)
    • ►  December (3)
    • ►  November (9)
    • ►  October (2)
    • ►  September (5)
    • ►  August (2)
    • ►  July (6)
    • ▼  June (7)
      • Fast, Accurate Detection of 100,000 Object Classes...
      • Some Innovative MOOCs
      • Excellent Papers for 2012
      • Improving Photo Search: A Step Across the Semantic...
      • 2013 Google PhD Fellowships: 5 Years of Supporting...
      • Building A Visual Planetary Time Machine
      • The Story Behind Course Builder
    • ►  May (5)
    • ►  April (3)
    • ►  March (4)
    • ►  February (4)
    • ►  January (1)
  • ►  2012 (59)
    • ►  December (4)
    • ►  October (4)
    • ►  September (3)
    • ►  August (9)
    • ►  July (9)
    • ►  June (7)
    • ►  May (7)
    • ►  April (2)
    • ►  March (7)
    • ►  February (3)
    • ►  January (4)
  • ►  2011 (51)
    • ►  December (5)
    • ►  November (2)
    • ►  September (3)
    • ►  August (4)
    • ►  July (9)
    • ►  June (6)
    • ►  May (4)
    • ►  April (4)
    • ►  March (5)
    • ►  February (5)
    • ►  January (4)
  • ►  2010 (44)
    • ►  December (7)
    • ►  November (2)
    • ►  October (9)
    • ►  September (7)
    • ►  August (2)
    • ►  July (7)
    • ►  June (3)
    • ►  May (2)
    • ►  April (1)
    • ►  March (1)
    • ►  February (1)
    • ►  January (2)
  • ►  2009 (44)
    • ►  December (8)
    • ►  November (4)
    • ►  August (4)
    • ►  July (5)
    • ►  June (5)
    • ►  May (4)
    • ►  April (6)
    • ►  March (3)
    • ►  February (1)
    • ►  January (4)
  • ►  2008 (11)
    • ►  December (1)
    • ►  November (1)
    • ►  October (1)
    • ►  September (1)
    • ►  July (1)
    • ►  May (3)
    • ►  April (1)
    • ►  March (1)
    • ►  February (1)
  • ►  2007 (9)
    • ►  October (1)
    • ►  September (2)
    • ►  August (1)
    • ►  July (1)
    • ►  June (2)
    • ►  February (2)
  • ►  2006 (15)
    • ►  December (1)
    • ►  November (1)
    • ►  September (1)
    • ►  August (1)
    • ►  July (1)
    • ►  June (2)
    • ►  April (3)
    • ►  March (4)
    • ►  February (1)
Powered by Blogger.

About Me

Unknown
View my complete profile