Compact System

  • Subscribe to our RSS feed.
  • Twitter
  • StumbleUpon
  • Reddit
  • Facebook
  • Digg

Thursday, 27 June 2013

Fast, Accurate Detection of 100,000 Object Classes on a Single Machine

Posted on 10:00 by Unknown
Posted by Tom Dean, Google Research

Humans can distinguish among approximately 10,000 relatively high-level visual categories, but we can discriminate among a much larger set of visual stimuli referred to as features. These features might correspond to object parts, animal limbs, architectural details, landmarks, and other visual patterns we don’t have names for, and it is this larger collection of features we use as a basis with which to reconstruct and explain our day-to-day visual experience. Such features provide the components for more complicated visual stimuli and establish a context essential for us to resolve ambiguous scenes.

Contrary to current practice in computer vision, the explanatory context required to resolve a visual detail may not be entirely local. A flash of red bobbing along the ground might be a child’s toy in the context of a playground or a rooster in the context of a farmyard. It would be useful to have a large number of feature detectors capable of signaling the presence of such features, including detectors for sandboxes, swings, slides, cows, chickens, sheep and farm machinery necessary to establish the context for distinguishing between these two possibilities.

This year’s winner of the CVPR Best Paper Award, co-authored by Googlers Tom Dean, Mark Ruzon, Mark Segal, Jonathon Shlens, Sudheendra Vijayanarasimhan and Jay Yagnik, describes technology that will enable computer vision systems to extract the sort of semantically rich contextual information required to recognize visual categories even when a close examination of the pixels spanning the object in question might not be sufficient for identification in the absence of such contextual clues. Specifically, we consider a basic operation in computer vision that involves determining for each location in an image the degree to which a particular feature is likely to be present in the image at that particular location.

This so-called convolution operator is one of the key operations used in computer vision and, more broadly, all of signal processing. Unfortunately, it is computationally expensive and hence researchers use it sparingly or employ exotic SIMD hardware like GPUs and FPGAs to mitigate the computational cost. We turn things on their head by showing how one can use fast table lookup — a method called hashing — to trade time for space, replacing the computationally-expensive inner loop of the convolution operator — a sequence of multiplications and additions — required for performing millions of convolutions with a single table lookup.

We demonstrate the advantages of our approach by scaling object detection from the current state of the art involving several hundred or at most a few thousand of object categories to 100,000 categories requiring what would amount to more than a million convolutions. Moreover, our demonstration was carried out on a single commodity computer requiring only a few seconds for each image. The basic technology is used in several pieces of Google infrastructure and can be applied to problems outside of computer vision such as auditory signal processing.

On Wednesday, June 26, the Google engineers responsible for the research were awarded Best Paper at a ceremony at the IEEE Conference on Computer Vision and Pattern Recognition held in Portland Oregon. The full paper can be found here.
Email ThisBlogThis!Share to XShare to Facebook
Posted in Publications | No comments
Newer Post Older Post Home

0 comments:

Post a Comment

Subscribe to: Post Comments (Atom)

Popular Posts

  • New research from Google shows that 88% of the traffic generated by mobile search ads is not replaced by traffic originating from mobile organic search
    Posted by Shaun Lysen, Statistician at Google Often times people are presented with two choices after making a search on their devices - the...
  • Education Awards on Google App Engine
    Posted by Andrea Held, Google University Relations Cross-posted with Google Developers Blog Last year we invited proposals for innovative p...
  • More researchers dive into the digital humanities
    Posted by Jon Orwant, Engineering Manager for Google Books When we started Google Book Search back in 2004, we were driven by the desire to...
  • Google, the World Wide Web and WWW conference: years of progress, prosperity and innovation
    Posted by Prabhakar Raghavan, Vice President of Engineering More than forty members of Google’s technical staff gathered in Lyon, France i...
  • Query Language Modeling for Voice Search
    Posted by Ciprian Chelba, Research Scientist About three years ago we set a goal to enable speaking to the Google Search engine on smart-pho...
  • Announcing our Q4 Research Awards
    Posted by Maggie Johnson, Director of Education & University Relations and Jeff Walz, Head of University Relations We do a significant a...
  • Word of Mouth: Introducing Voice Search for Indonesian, Malaysian and Latin American Spanish
    Posted by Linne Ha, International Program Manager Read more about the launch of Voice Search in Latin American Spanish on the Google América...
  • Under the Hood of App Inventor for Android
    Posted by Bill Magnuson, Hal Abelson, and Mark Friedman We recently announced our App Inventor for Android project on the Google Research B...
  • Make Your Websites More Accessible to More Users with Introduction to Web Accessibility
    Eve Andersson, Manager, Accessibility Engineering Cross-posted with  Google Developer's Blog You work hard to build clean, intuitive web...
  • 11 Billion Clues in 800 Million Documents: A Web Research Corpus Annotated with Freebase Concepts
    Posted by Dave Orr, Amar Subramanya, Evgeniy Gabrilovich, and Michael Ringgaard, Google Research “I assume that by knowing the truth you mea...

Categories

  • accessibility
  • ACL
  • ACM
  • Acoustic Modeling
  • ads
  • adsense
  • adwords
  • Africa
  • Android
  • API
  • App Engine
  • App Inventor
  • Audio
  • Awards
  • Cantonese
  • China
  • Computer Science
  • conference
  • conferences
  • correlate
  • crowd-sourcing
  • CVPR
  • datasets
  • Deep Learning
  • distributed systems
  • Earth Engine
  • economics
  • Education
  • Electronic Commerce and Algorithms
  • EMEA
  • EMNLP
  • entities
  • Exacycle
  • Faculty Institute
  • Faculty Summit
  • Fusion Tables
  • gamification
  • Google Books
  • Google+
  • Government
  • grants
  • HCI
  • Image Annotation
  • Information Retrieval
  • internationalization
  • Interspeech
  • jsm
  • jsm2011
  • K-12
  • Korean
  • Labs
  • localization
  • Machine Hearing
  • Machine Learning
  • Machine Translation
  • MapReduce
  • market algorithms
  • Market Research
  • ML
  • MOOC
  • NAACL
  • Natural Language Processing
  • Networks
  • Ngram
  • NIPS
  • NLP
  • open source
  • operating systems
  • osdi
  • osdi10
  • patents
  • ph.d. fellowship
  • PiLab
  • Policy
  • Public Data Explorer
  • publication
  • Publications
  • renewable energy
  • Research Awards
  • resource optimization
  • Search
  • search ads
  • Security and Privacy
  • SIGMOD
  • Site Reliability Engineering
  • Speech
  • statistics
  • Structured Data
  • Systems
  • Translate
  • trends
  • TV
  • UI
  • University Relations
  • UNIX
  • User Experience
  • video
  • Vision Research
  • Visiting Faculty
  • Visualization
  • Voice Search
  • Wiki
  • wikipedia
  • WWW
  • YouTube

Blog Archive

  • ▼  2013 (51)
    • ►  December (3)
    • ►  November (9)
    • ►  October (2)
    • ►  September (5)
    • ►  August (2)
    • ►  July (6)
    • ▼  June (7)
      • Fast, Accurate Detection of 100,000 Object Classes...
      • Some Innovative MOOCs
      • Excellent Papers for 2012
      • Improving Photo Search: A Step Across the Semantic...
      • 2013 Google PhD Fellowships: 5 Years of Supporting...
      • Building A Visual Planetary Time Machine
      • The Story Behind Course Builder
    • ►  May (5)
    • ►  April (3)
    • ►  March (4)
    • ►  February (4)
    • ►  January (1)
  • ►  2012 (59)
    • ►  December (4)
    • ►  October (4)
    • ►  September (3)
    • ►  August (9)
    • ►  July (9)
    • ►  June (7)
    • ►  May (7)
    • ►  April (2)
    • ►  March (7)
    • ►  February (3)
    • ►  January (4)
  • ►  2011 (51)
    • ►  December (5)
    • ►  November (2)
    • ►  September (3)
    • ►  August (4)
    • ►  July (9)
    • ►  June (6)
    • ►  May (4)
    • ►  April (4)
    • ►  March (5)
    • ►  February (5)
    • ►  January (4)
  • ►  2010 (44)
    • ►  December (7)
    • ►  November (2)
    • ►  October (9)
    • ►  September (7)
    • ►  August (2)
    • ►  July (7)
    • ►  June (3)
    • ►  May (2)
    • ►  April (1)
    • ►  March (1)
    • ►  February (1)
    • ►  January (2)
  • ►  2009 (44)
    • ►  December (8)
    • ►  November (4)
    • ►  August (4)
    • ►  July (5)
    • ►  June (5)
    • ►  May (4)
    • ►  April (6)
    • ►  March (3)
    • ►  February (1)
    • ►  January (4)
  • ►  2008 (11)
    • ►  December (1)
    • ►  November (1)
    • ►  October (1)
    • ►  September (1)
    • ►  July (1)
    • ►  May (3)
    • ►  April (1)
    • ►  March (1)
    • ►  February (1)
  • ►  2007 (9)
    • ►  October (1)
    • ►  September (2)
    • ►  August (1)
    • ►  July (1)
    • ►  June (2)
    • ►  February (2)
  • ►  2006 (15)
    • ►  December (1)
    • ►  November (1)
    • ►  September (1)
    • ►  August (1)
    • ►  July (1)
    • ►  June (2)
    • ►  April (3)
    • ►  March (4)
    • ►  February (1)
Powered by Blogger.

About Me

Unknown
View my complete profile