Compact System

  • Subscribe to our RSS feed.
  • Twitter
  • StumbleUpon
  • Reddit
  • Facebook
  • Digg

Thursday, 11 April 2013

50,000 Lessons on How to Read: a Relation Extraction Corpus

Posted on 09:00 by Unknown
Posted by Dave Orr, Product Manager, Google Research

One of the most difficult tasks in NLP is called relation extraction. It’s an example of information extraction, one of the goals of natural language understanding. A relation is a semantic connection between (at least) two entities. For instance, you could say that Jim Henson was in a spouse relation with Jane Henson (and in a creator relation with many beloved characters and shows).

The goal of relation extraction is to learn relations from unstructured natural language text. The relations can be used to answer questions (“Who created Kermit?”), learn which proteins interact in the biomedical literature, or to build a database of hundreds of millions of entities and billions of relations to try and help people explore the world’s information.

To help researchers investigate relation extraction, we’re releasing a human-judged dataset of two relations about public figures on Wikipedia: nearly 10,000 examples of “place of birth”, and over 40,000 examples of “attended or graduated from an institution”. Each of these was judged by at least 5 raters, and can be used to train or evaluate relation extraction systems. We also plan to release more relations of new types in the coming months.

Each relation is in the form of a triple: the relation in question, called a predicate; the subject of the relation; and the object of the relation. In the relation “Stephen Hawking graduated from Oxford,” Stephen Hawking is the subject, graduated from is the relation, and Oxford University is the object. Subjects and objects are represented by their Freebase MID’s, and the relation is defined as a Freebase property. So in this case, the triple would be represented as:

"pred":"/education/education/institution"
"sub":"/m/01tdnyh"
"obj":"/m/07tgn"

Just having the triples is interesting enough if you want a database of entities and relations, but doesn’t make much progress towards training or evaluation a relation extraction system. So we’ve also included the evidence for the relation, in the form of a URL and an excerpt from the web page that our raters judged. We’re also including examples where the evidence does not support the relation, so you have negative examples for use in training better extraction systems. Finally, we included ID’s and actual judgments of individual raters, so that you can filter triples by agreement.

Gory Details

The corpus itself, extracted from Wikipedia, can be found here: https://code.google.com/p/relation-extraction-corpus/

The files are in JSON format. Each line is a triple with the following fields:

  • pred: predicate of a triple
  • sub: subject of a triple
  • obj: object of a triple
  • evidences: an array of evidences for this triple
    • url: the web page from which this evidence was obtained
    • snippet: short piece of text supporting the triple
  • judgments: an array of judgements from human annotators
    • rator: hash code of the identity of the annotator
    • judgment: judgement of the annotator. It can take the values "yes" or "no"

Here’s an example:


{"pred":"/people/person/place_of_birth","sub":"/m/026_tl9","obj":"/m/02_286","evidences":[{"url":"http://en.wikipedia.org/wiki/Morris_S._Miller","snippet":"Morris Smith Miller (July 31, 1779 -- November 16, 1824) was a United States Representative from New York. Born in New York City, he graduated from Union College in Schenectady in 1798. He studied law and was admitted to the bar. Miller served as private secretary to Governor Jay, and subsequently, in 1806, commenced the practice of his profession in Utica. He was president of the village of Utica in 1808 and judge of the court of common pleas of Oneida County from 1810 until his death."}],"judgments":[{"rater":"11595942516201422884","judgment":"yes"},{"rater":"16169597761094238409","judgment":"yes"},{"rater":"1014448455121957356","judgment":"yes"},{"rater":"16651790297630307764","judgment":"yes"},{"rater":"1855142007844680025","judgment":"yes"}]}

The web is chock full of information, put there to be read and learned from. Our hope is that this corpus is a small step towards computational understanding of the wealth of relations to be found everywhere you look.

This dataset is licensed by Google Inc. under the Creative Commons Attribution-Sharealike 3.0 license.

Thanks to Shaohua Sun, Ni Lao, and Rahul Gupta for putting this dataset together.

Thanks also to Michael Ringgaard, Fernando Pereira, Amar Subramanya, Evgeniy Gabrilovich, and John Giannandrea for making this data release possible.
Email ThisBlogThis!Share to XShare to Facebook
Posted in Natural Language Processing, Wiki | No comments
Newer Post Older Post Home

0 comments:

Post a Comment

Subscribe to: Post Comments (Atom)

Popular Posts

  • CDC Birth Vital Statistics in BigQuery
    Posted by Dan Vanderkam, Software Engineer Google’s BigQuery Service lets enterprises and developers crunch large-scale data sets quickly...
  • Our Unique Approach to Research
    Posted by  Alfred Spector , Vice President of Research and Special Initiatives Google started as a research project —and research has remain...
  • Google, the World Wide Web and WWW conference: years of progress, prosperity and innovation
    Posted by Prabhakar Raghavan, Vice President of Engineering More than forty members of Google’s technical staff gathered in Lyon, France i...
  • Partnering with Tsinghua University to support education in Western China
    Posted by Aimin Zhu, China University Relations We’re excited to announce that we’ve teamed up with Tsinghua University to provide educatio...
  • Our Faculty Institute brings faculty back to the drawing board
    Posted by Nina Kim Schultz, Google Education Research Cross-posted with the Official Google Blog School may still be out for summer, but tea...
  • Site Reliability Engineers: “solving the most interesting problems”
    Posted by Chris Reid, Sydney Staffing team I recently sat down with Ben Appleton, a Senior Staff Software Engineer, to talk about his recent...
  • More Google Cluster Data
    Posted by John Wilkes, Principal Software Engineer Google has a strong interest in promoting high quality systems research, and we believe t...
  • Impact of Organic Ranking on Ad Click Incrementality
    Posted by David Chan, Statistician and Lizzy Van Alstine, Research Evangelist  In 2011, Google released a Search Ads Pause research study w...
  • Market Algorithms and Optimization Meeting
    Posted by  Vahab S. Mirrokni and Muthu Muthukrishnan Google auctions ads, and enables a market with millions of advertisers and users.  This...
  • Released Data Set: Features Extracted From YouTube Videos for Multiview Learning
    Posted by Omid Madani, Senior Software Engineer “If it looks like a duck, swims like a duck, and quacks like a duck, then it probably is a ...

Categories

  • accessibility
  • ACL
  • ACM
  • Acoustic Modeling
  • ads
  • adsense
  • adwords
  • Africa
  • Android
  • API
  • App Engine
  • App Inventor
  • Audio
  • Awards
  • Cantonese
  • China
  • Computer Science
  • conference
  • conferences
  • correlate
  • crowd-sourcing
  • CVPR
  • datasets
  • Deep Learning
  • distributed systems
  • Earth Engine
  • economics
  • Education
  • Electronic Commerce and Algorithms
  • EMEA
  • EMNLP
  • entities
  • Exacycle
  • Faculty Institute
  • Faculty Summit
  • Fusion Tables
  • gamification
  • Google Books
  • Google+
  • Government
  • grants
  • HCI
  • Image Annotation
  • Information Retrieval
  • internationalization
  • Interspeech
  • jsm
  • jsm2011
  • K-12
  • Korean
  • Labs
  • localization
  • Machine Hearing
  • Machine Learning
  • Machine Translation
  • MapReduce
  • market algorithms
  • Market Research
  • ML
  • MOOC
  • NAACL
  • Natural Language Processing
  • Networks
  • Ngram
  • NIPS
  • NLP
  • open source
  • operating systems
  • osdi
  • osdi10
  • patents
  • ph.d. fellowship
  • PiLab
  • Policy
  • Public Data Explorer
  • publication
  • Publications
  • renewable energy
  • Research Awards
  • resource optimization
  • Search
  • search ads
  • Security and Privacy
  • SIGMOD
  • Site Reliability Engineering
  • Speech
  • statistics
  • Structured Data
  • Systems
  • Translate
  • trends
  • TV
  • UI
  • University Relations
  • UNIX
  • User Experience
  • video
  • Vision Research
  • Visiting Faculty
  • Visualization
  • Voice Search
  • Wiki
  • wikipedia
  • WWW
  • YouTube

Blog Archive

  • ▼  2013 (51)
    • ►  December (3)
    • ►  November (9)
    • ►  October (2)
    • ►  September (5)
    • ►  August (2)
    • ►  July (6)
    • ►  June (7)
    • ►  May (5)
    • ▼  April (3)
      • Two Googlers elected to the American Academy of Ar...
      • 50,000 Lessons on How to Read: a Relation Extracti...
      • Advanced Power Searching with Google: Lessons Learned
    • ►  March (4)
    • ►  February (4)
    • ►  January (1)
  • ►  2012 (59)
    • ►  December (4)
    • ►  October (4)
    • ►  September (3)
    • ►  August (9)
    • ►  July (9)
    • ►  June (7)
    • ►  May (7)
    • ►  April (2)
    • ►  March (7)
    • ►  February (3)
    • ►  January (4)
  • ►  2011 (51)
    • ►  December (5)
    • ►  November (2)
    • ►  September (3)
    • ►  August (4)
    • ►  July (9)
    • ►  June (6)
    • ►  May (4)
    • ►  April (4)
    • ►  March (5)
    • ►  February (5)
    • ►  January (4)
  • ►  2010 (44)
    • ►  December (7)
    • ►  November (2)
    • ►  October (9)
    • ►  September (7)
    • ►  August (2)
    • ►  July (7)
    • ►  June (3)
    • ►  May (2)
    • ►  April (1)
    • ►  March (1)
    • ►  February (1)
    • ►  January (2)
  • ►  2009 (44)
    • ►  December (8)
    • ►  November (4)
    • ►  August (4)
    • ►  July (5)
    • ►  June (5)
    • ►  May (4)
    • ►  April (6)
    • ►  March (3)
    • ►  February (1)
    • ►  January (4)
  • ►  2008 (11)
    • ►  December (1)
    • ►  November (1)
    • ►  October (1)
    • ►  September (1)
    • ►  July (1)
    • ►  May (3)
    • ►  April (1)
    • ►  March (1)
    • ►  February (1)
  • ►  2007 (9)
    • ►  October (1)
    • ►  September (2)
    • ►  August (1)
    • ►  July (1)
    • ►  June (2)
    • ►  February (2)
  • ►  2006 (15)
    • ►  December (1)
    • ►  November (1)
    • ►  September (1)
    • ►  August (1)
    • ►  July (1)
    • ►  June (2)
    • ►  April (3)
    • ►  March (4)
    • ►  February (1)
Powered by Blogger.

About Me

Unknown
View my complete profile