Compact System

  • Subscribe to our RSS feed.
  • Twitter
  • StumbleUpon
  • Reddit
  • Facebook
  • Digg

Tuesday, 31 July 2012

Natural Language in Voice Search

Posted on 17:42 by Unknown
Posted by Jakob Uszkoreit, Software Engineer

On July 26 and 27, we held our eighth annual Computer Science Faculty Summit on our Mountain View Campus. During the event, we brought you a series of blog posts dedicated to sharing the Summit's talks, panels and sessions, and we continue with this glimpse into natural language in voice search. --Ed

At this year’s Faculty Summit, I had the opportunity to showcase the newest version of Google Voice Search. This version hints at how Google Search, in particular on mobile devices and by voice, will become increasingly capable of responding to natural language queries.

I first outlined the trajectory of Google Voice Search, which was initially released in 2007. Voice actions, launched in 2010 for Android devices, made it possible to control your device by speaking to it. For example, if you wanted to set your device alarm for 10:00 AM, you could say “set alarm for 10:00 AM. Label: meeting on voice actions.” To indicate the subject of the alarm, a meeting about voice actions, you would have to use the keyword “label”! Certainly not everyone would think to frame the requested action this way. What if you could speak to your device in a more natural way and have it understand you?

At last month’s Google I/O 2012, we announced a version of voice actions that supports much more natural commands. For instance, your device will now set an alarm if you say “my meeting is at 10:00 AM, remind me”. This makes even previously existing functionality, such as sending a text message or calling someone, more discoverable on the device -- that is, if you express a voice command in whatever way feels natural to you, whether it be “let David know I’ll be late via text” or “make sure I buy milk by 3 pm”, there is now a good chance that your device will respond how you anticipated it to.

I then discussed some of the possibly unexpected decisions we made when designing the system we now use for interpreting natural language queries or requests. For example, as you would expect from Google, our approach to interpreting natural language queries is data-driven and relies heavily on machine learning. In complex machine learning systems, however, it is often difficult to figure out the underlying cause for an error: after supplying them with training and test data, you merely obtain a set of metrics that hopefully give a reasonable indication about the system’s quality but they fail to provide an explanation for why a certain input lead to a given, possibly wrong output.

As a result, even understanding why some mistakes were made requires experts in the field and detailed analysis, rendering it nearly impossible to harness non-experts in analyzing and improving such systems. To avoid this, we aim to make every partial decision of the system as interpretable as possible. In many cases, any random speaker of English could look at its possibly erroneous behavior in response to some input and quickly identify the underlying issue - and in some cases even fix it!

We are especially interested in working with our academic colleagues on some of the many fascinating research and engineering challenges in building large-scale, yet interpretable natural language understanding systems and devising the machine learning algorithms this requires.

Email ThisBlogThis!Share to XShare to Facebook
Posted in Faculty Summit, Machine Learning, Natural Language Processing, Speech | No comments
Newer Post Older Post Home

0 comments:

Post a Comment

Subscribe to: Post Comments (Atom)

Popular Posts

  • Towards Energy-Proportional Datacenters
    Posted by Dennis Abts, Michael R. Marty, Philip M. Wells, Peter Klausler, and Hong Liu This is part of the series highlighting some notable...
  • CDC Birth Vital Statistics in BigQuery
    Posted by Dan Vanderkam, Software Engineer Google’s BigQuery Service lets enterprises and developers crunch large-scale data sets quickly...
  • Market Algorithms and Optimization Meeting
    Posted by  Vahab S. Mirrokni and Muthu Muthukrishnan Google auctions ads, and enables a market with millions of advertisers and users.  This...
  • International Conference on Machine Learning (ICML 2009) in Montreal
    Posted by Eyal Even Dar and Vahab Mirrokni , Google Research, NY The 26th International Conference on Machine Learning ( ICML 2009 ) was re...
  • Site Reliability Engineers: “solving the most interesting problems”
    Posted by Chris Reid, Sydney Staffing team I recently sat down with Ben Appleton, a Senior Staff Software Engineer, to talk about his recent...
  • Two Views from the 2009 Google Faculty Summit
    Posted by Alfred Spector, Vice President of Research and Special Initiatives [cross-posted with the Official Google Blog ] We held our fifth...
  • Focusing on Our Users: The Google Health Redesign
    Posted by Hendrik Mueller, User Experience Researcher When I relocated to New York City a few years ago, some of the most important health i...
  • Supporting computer science education with CS4HS
    Posted by Terry Ednacot, Education Program Manager Recent statistics have shown a decline in the number of U.S. students taking computer sc...
  • Large-scale graph computing at Google
    Posted by Grzegorz Czajkowski, Systems Infrastructure Team If you squint the right way, you will notice that graphs are everywhere. For exam...
  • Our Faculty Institute brings faculty back to the drawing board
    Posted by Nina Kim Schultz, Google Education Research Cross-posted with the Official Google Blog School may still be out for summer, but tea...

Categories

  • accessibility
  • ACL
  • ACM
  • Acoustic Modeling
  • ads
  • adsense
  • adwords
  • Africa
  • Android
  • API
  • App Engine
  • App Inventor
  • Audio
  • Awards
  • Cantonese
  • China
  • Computer Science
  • conference
  • conferences
  • correlate
  • crowd-sourcing
  • CVPR
  • datasets
  • Deep Learning
  • distributed systems
  • Earth Engine
  • economics
  • Education
  • Electronic Commerce and Algorithms
  • EMEA
  • EMNLP
  • entities
  • Exacycle
  • Faculty Institute
  • Faculty Summit
  • Fusion Tables
  • gamification
  • Google Books
  • Google+
  • Government
  • grants
  • HCI
  • Image Annotation
  • Information Retrieval
  • internationalization
  • Interspeech
  • jsm
  • jsm2011
  • K-12
  • Korean
  • Labs
  • localization
  • Machine Hearing
  • Machine Learning
  • Machine Translation
  • MapReduce
  • market algorithms
  • Market Research
  • ML
  • MOOC
  • NAACL
  • Natural Language Processing
  • Networks
  • Ngram
  • NIPS
  • NLP
  • open source
  • operating systems
  • osdi
  • osdi10
  • patents
  • ph.d. fellowship
  • PiLab
  • Policy
  • Public Data Explorer
  • publication
  • Publications
  • renewable energy
  • Research Awards
  • resource optimization
  • Search
  • search ads
  • Security and Privacy
  • SIGMOD
  • Site Reliability Engineering
  • Speech
  • statistics
  • Structured Data
  • Systems
  • Translate
  • trends
  • TV
  • UI
  • University Relations
  • UNIX
  • User Experience
  • video
  • Vision Research
  • Visiting Faculty
  • Visualization
  • Voice Search
  • Wiki
  • wikipedia
  • WWW
  • YouTube

Blog Archive

  • ►  2013 (51)
    • ►  December (3)
    • ►  November (9)
    • ►  October (2)
    • ►  September (5)
    • ►  August (2)
    • ►  July (6)
    • ►  June (7)
    • ►  May (5)
    • ►  April (3)
    • ►  March (4)
    • ►  February (4)
    • ►  January (1)
  • ▼  2012 (59)
    • ►  December (4)
    • ►  October (4)
    • ►  September (3)
    • ►  August (9)
    • ▼  July (9)
      • Natural Language in Voice Search
      • New Challenges in Computer Science Research
      • Education in the Cloud
      • Big Pictures with Big Messages
      • Site Reliability Engineers: “solving the most inte...
      • Google at SIGMOD/PODS 2012
      • Reflections on the Google Faculty Institute
      • Google Research Awards: Summer, 2012
      • Our Unique Approach to Research
    • ►  June (7)
    • ►  May (7)
    • ►  April (2)
    • ►  March (7)
    • ►  February (3)
    • ►  January (4)
  • ►  2011 (51)
    • ►  December (5)
    • ►  November (2)
    • ►  September (3)
    • ►  August (4)
    • ►  July (9)
    • ►  June (6)
    • ►  May (4)
    • ►  April (4)
    • ►  March (5)
    • ►  February (5)
    • ►  January (4)
  • ►  2010 (44)
    • ►  December (7)
    • ►  November (2)
    • ►  October (9)
    • ►  September (7)
    • ►  August (2)
    • ►  July (7)
    • ►  June (3)
    • ►  May (2)
    • ►  April (1)
    • ►  March (1)
    • ►  February (1)
    • ►  January (2)
  • ►  2009 (44)
    • ►  December (8)
    • ►  November (4)
    • ►  August (4)
    • ►  July (5)
    • ►  June (5)
    • ►  May (4)
    • ►  April (6)
    • ►  March (3)
    • ►  February (1)
    • ►  January (4)
  • ►  2008 (11)
    • ►  December (1)
    • ►  November (1)
    • ►  October (1)
    • ►  September (1)
    • ►  July (1)
    • ►  May (3)
    • ►  April (1)
    • ►  March (1)
    • ►  February (1)
  • ►  2007 (9)
    • ►  October (1)
    • ►  September (2)
    • ►  August (1)
    • ►  July (1)
    • ►  June (2)
    • ►  February (2)
  • ►  2006 (15)
    • ►  December (1)
    • ►  November (1)
    • ►  September (1)
    • ►  August (1)
    • ►  July (1)
    • ►  June (2)
    • ►  April (3)
    • ►  March (4)
    • ►  February (1)
Powered by Blogger.

About Me

Unknown
View my complete profile