Compact System

  • Subscribe to our RSS feed.
  • Twitter
  • StumbleUpon
  • Reddit
  • Facebook
  • Digg

Tuesday, 31 July 2012

Natural Language in Voice Search

Posted on 17:42 by Unknown
Posted by Jakob Uszkoreit, Software Engineer

On July 26 and 27, we held our eighth annual Computer Science Faculty Summit on our Mountain View Campus. During the event, we brought you a series of blog posts dedicated to sharing the Summit's talks, panels and sessions, and we continue with this glimpse into natural language in voice search. --Ed

At this year’s Faculty Summit, I had the opportunity to showcase the newest version of Google Voice Search. This version hints at how Google Search, in particular on mobile devices and by voice, will become increasingly capable of responding to natural language queries.

I first outlined the trajectory of Google Voice Search, which was initially released in 2007. Voice actions, launched in 2010 for Android devices, made it possible to control your device by speaking to it. For example, if you wanted to set your device alarm for 10:00 AM, you could say “set alarm for 10:00 AM. Label: meeting on voice actions.” To indicate the subject of the alarm, a meeting about voice actions, you would have to use the keyword “label”! Certainly not everyone would think to frame the requested action this way. What if you could speak to your device in a more natural way and have it understand you?

At last month’s Google I/O 2012, we announced a version of voice actions that supports much more natural commands. For instance, your device will now set an alarm if you say “my meeting is at 10:00 AM, remind me”. This makes even previously existing functionality, such as sending a text message or calling someone, more discoverable on the device -- that is, if you express a voice command in whatever way feels natural to you, whether it be “let David know I’ll be late via text” or “make sure I buy milk by 3 pm”, there is now a good chance that your device will respond how you anticipated it to.

I then discussed some of the possibly unexpected decisions we made when designing the system we now use for interpreting natural language queries or requests. For example, as you would expect from Google, our approach to interpreting natural language queries is data-driven and relies heavily on machine learning. In complex machine learning systems, however, it is often difficult to figure out the underlying cause for an error: after supplying them with training and test data, you merely obtain a set of metrics that hopefully give a reasonable indication about the system’s quality but they fail to provide an explanation for why a certain input lead to a given, possibly wrong output.

As a result, even understanding why some mistakes were made requires experts in the field and detailed analysis, rendering it nearly impossible to harness non-experts in analyzing and improving such systems. To avoid this, we aim to make every partial decision of the system as interpretable as possible. In many cases, any random speaker of English could look at its possibly erroneous behavior in response to some input and quickly identify the underlying issue - and in some cases even fix it!

We are especially interested in working with our academic colleagues on some of the many fascinating research and engineering challenges in building large-scale, yet interpretable natural language understanding systems and devising the machine learning algorithms this requires.

Email ThisBlogThis!Share to XShare to Facebook
Posted in Faculty Summit, Machine Learning, Natural Language Processing, Speech | No comments
Newer Post Older Post Home

0 comments:

Post a Comment

Subscribe to: Post Comments (Atom)

Popular Posts

  • New research from Google shows that 88% of the traffic generated by mobile search ads is not replaced by traffic originating from mobile organic search
    Posted by Shaun Lysen, Statistician at Google Often times people are presented with two choices after making a search on their devices - the...
  • Education Awards on Google App Engine
    Posted by Andrea Held, Google University Relations Cross-posted with Google Developers Blog Last year we invited proposals for innovative p...
  • More researchers dive into the digital humanities
    Posted by Jon Orwant, Engineering Manager for Google Books When we started Google Book Search back in 2004, we were driven by the desire to...
  • Google, the World Wide Web and WWW conference: years of progress, prosperity and innovation
    Posted by Prabhakar Raghavan, Vice President of Engineering More than forty members of Google’s technical staff gathered in Lyon, France i...
  • Query Language Modeling for Voice Search
    Posted by Ciprian Chelba, Research Scientist About three years ago we set a goal to enable speaking to the Google Search engine on smart-pho...
  • Announcing our Q4 Research Awards
    Posted by Maggie Johnson, Director of Education & University Relations and Jeff Walz, Head of University Relations We do a significant a...
  • Word of Mouth: Introducing Voice Search for Indonesian, Malaysian and Latin American Spanish
    Posted by Linne Ha, International Program Manager Read more about the launch of Voice Search in Latin American Spanish on the Google América...
  • Under the Hood of App Inventor for Android
    Posted by Bill Magnuson, Hal Abelson, and Mark Friedman We recently announced our App Inventor for Android project on the Google Research B...
  • Make Your Websites More Accessible to More Users with Introduction to Web Accessibility
    Eve Andersson, Manager, Accessibility Engineering Cross-posted with  Google Developer's Blog You work hard to build clean, intuitive web...
  • 11 Billion Clues in 800 Million Documents: A Web Research Corpus Annotated with Freebase Concepts
    Posted by Dave Orr, Amar Subramanya, Evgeniy Gabrilovich, and Michael Ringgaard, Google Research “I assume that by knowing the truth you mea...

Categories

  • accessibility
  • ACL
  • ACM
  • Acoustic Modeling
  • ads
  • adsense
  • adwords
  • Africa
  • Android
  • API
  • App Engine
  • App Inventor
  • Audio
  • Awards
  • Cantonese
  • China
  • Computer Science
  • conference
  • conferences
  • correlate
  • crowd-sourcing
  • CVPR
  • datasets
  • Deep Learning
  • distributed systems
  • Earth Engine
  • economics
  • Education
  • Electronic Commerce and Algorithms
  • EMEA
  • EMNLP
  • entities
  • Exacycle
  • Faculty Institute
  • Faculty Summit
  • Fusion Tables
  • gamification
  • Google Books
  • Google+
  • Government
  • grants
  • HCI
  • Image Annotation
  • Information Retrieval
  • internationalization
  • Interspeech
  • jsm
  • jsm2011
  • K-12
  • Korean
  • Labs
  • localization
  • Machine Hearing
  • Machine Learning
  • Machine Translation
  • MapReduce
  • market algorithms
  • Market Research
  • ML
  • MOOC
  • NAACL
  • Natural Language Processing
  • Networks
  • Ngram
  • NIPS
  • NLP
  • open source
  • operating systems
  • osdi
  • osdi10
  • patents
  • ph.d. fellowship
  • PiLab
  • Policy
  • Public Data Explorer
  • publication
  • Publications
  • renewable energy
  • Research Awards
  • resource optimization
  • Search
  • search ads
  • Security and Privacy
  • SIGMOD
  • Site Reliability Engineering
  • Speech
  • statistics
  • Structured Data
  • Systems
  • Translate
  • trends
  • TV
  • UI
  • University Relations
  • UNIX
  • User Experience
  • video
  • Vision Research
  • Visiting Faculty
  • Visualization
  • Voice Search
  • Wiki
  • wikipedia
  • WWW
  • YouTube

Blog Archive

  • ►  2013 (51)
    • ►  December (3)
    • ►  November (9)
    • ►  October (2)
    • ►  September (5)
    • ►  August (2)
    • ►  July (6)
    • ►  June (7)
    • ►  May (5)
    • ►  April (3)
    • ►  March (4)
    • ►  February (4)
    • ►  January (1)
  • ▼  2012 (59)
    • ►  December (4)
    • ►  October (4)
    • ►  September (3)
    • ►  August (9)
    • ▼  July (9)
      • Natural Language in Voice Search
      • New Challenges in Computer Science Research
      • Education in the Cloud
      • Big Pictures with Big Messages
      • Site Reliability Engineers: “solving the most inte...
      • Google at SIGMOD/PODS 2012
      • Reflections on the Google Faculty Institute
      • Google Research Awards: Summer, 2012
      • Our Unique Approach to Research
    • ►  June (7)
    • ►  May (7)
    • ►  April (2)
    • ►  March (7)
    • ►  February (3)
    • ►  January (4)
  • ►  2011 (51)
    • ►  December (5)
    • ►  November (2)
    • ►  September (3)
    • ►  August (4)
    • ►  July (9)
    • ►  June (6)
    • ►  May (4)
    • ►  April (4)
    • ►  March (5)
    • ►  February (5)
    • ►  January (4)
  • ►  2010 (44)
    • ►  December (7)
    • ►  November (2)
    • ►  October (9)
    • ►  September (7)
    • ►  August (2)
    • ►  July (7)
    • ►  June (3)
    • ►  May (2)
    • ►  April (1)
    • ►  March (1)
    • ►  February (1)
    • ►  January (2)
  • ►  2009 (44)
    • ►  December (8)
    • ►  November (4)
    • ►  August (4)
    • ►  July (5)
    • ►  June (5)
    • ►  May (4)
    • ►  April (6)
    • ►  March (3)
    • ►  February (1)
    • ►  January (4)
  • ►  2008 (11)
    • ►  December (1)
    • ►  November (1)
    • ►  October (1)
    • ►  September (1)
    • ►  July (1)
    • ►  May (3)
    • ►  April (1)
    • ►  March (1)
    • ►  February (1)
  • ►  2007 (9)
    • ►  October (1)
    • ►  September (2)
    • ►  August (1)
    • ►  July (1)
    • ►  June (2)
    • ►  February (2)
  • ►  2006 (15)
    • ►  December (1)
    • ►  November (1)
    • ►  September (1)
    • ►  August (1)
    • ►  July (1)
    • ►  June (2)
    • ►  April (3)
    • ►  March (4)
    • ►  February (1)
Powered by Blogger.

About Me

Unknown
View my complete profile