Compact System

  • Subscribe to our RSS feed.
  • Twitter
  • StumbleUpon
  • Reddit
  • Facebook
  • Digg

Thursday, 9 February 2012

Quantifying comedy on YouTube: why the number of o’s in your LOL matter

Posted on 07:30 by Unknown
Posted by Sanketh Shetty, YouTube Slam Team, Google Research 

In a previous post, we talked about quantification of musical talent using machine learning on acoustic features for YouTube Music Slam. We wondered if we could do the same for funny videos, i.e. answer questions such as: is a video funny, how funny do viewers think it is, and why is it funny? We noticed a few audiovisual patterns across comedy videos on YouTube, such as shaky camera motion or audible laughter, which we can automatically detect. While content-based features worked well for music, identifying humor based on just such features is AI-Complete. Humor preference is subjective, perhaps even more so than musical taste.

 Fortunately, at YouTube, we have more to work with. We focused on videos uploaded in the comedy category. We captured the uploader’s belief in the funniness of their video via features based on title, description and tags. Viewers’ reactions, in the form of comments, further validate a video’s comedic value. To this end we computed more text features based on words associated with amusement in comments. These included (a) sounds associated with laughter such as hahaha, with culture-dependent variants such as hehehe, jajaja, kekeke, (b) web acronyms such as lol, lmao, rofl, (c) funny and synonyms of funny, and (d) emoticons such as :), ;-), xP. We then trained classifiers to identify funny videos and then tell us why they are funny by categorizing them into genres such as “funny pets”, “spoofs or parodies”, “standup”, “pranks”, and “funny commercials”.

 Next we needed an algorithm to rank these funny videos by comedic potential, e.g. is “Charlie bit my finger” funnier than “David after dentist”? Raw viewcount on its own is insufficient as a ranking metric since it is biased by video age and exposure. We noticed that viewers emphasize their reaction to funny videos in several ways: e.g. capitalization (LOL), elongation (loooooool), repetition (lolololol), exclamation (lolllll!!!!!), and combinations thereof. If a user uses an “loooooool” vs an “loool”, does it mean they were more amused? We designed features to quantify the degree of emphasis on words associated with amusement in viewer comments. We then trained a passive-aggressive ranking algorithm using human-annotated pairwise ground truth and a combination of text and audiovisual features. Similar to Music Slam, we used this ranker to populate candidates for human voting for our Comedy Slam.

 So far, more than 75,000 people have cast more than 700,000 votes, making comedy our most popular slam category. Give it a try!

Further reading:
  1. “Opinion Mining and Sentiment Analysis,” by Bo Pang and Lillian Lee. 
  2. “A Great Catchy Name: Semi-Supervised Recognition of Sarcastic Sentences in Online Product Reviews,” by Oren Tsur, Dmitry Davidov, and Ari Rappoport. 
  3. “That’s What She Said: Double Entendre Identification,” by Chloe Kiddon and Yuriy Brun.
Email ThisBlogThis!Share to XShare to Facebook
Posted in Machine Learning, YouTube | No comments
Newer Post Older Post Home

0 comments:

Post a Comment

Subscribe to: Post Comments (Atom)

Popular Posts

  • CDC Birth Vital Statistics in BigQuery
    Posted by Dan Vanderkam, Software Engineer Google’s BigQuery Service lets enterprises and developers crunch large-scale data sets quickly...
  • Our Unique Approach to Research
    Posted by  Alfred Spector , Vice President of Research and Special Initiatives Google started as a research project —and research has remain...
  • Google, the World Wide Web and WWW conference: years of progress, prosperity and innovation
    Posted by Prabhakar Raghavan, Vice President of Engineering More than forty members of Google’s technical staff gathered in Lyon, France i...
  • Partnering with Tsinghua University to support education in Western China
    Posted by Aimin Zhu, China University Relations We’re excited to announce that we’ve teamed up with Tsinghua University to provide educatio...
  • Our Faculty Institute brings faculty back to the drawing board
    Posted by Nina Kim Schultz, Google Education Research Cross-posted with the Official Google Blog School may still be out for summer, but tea...
  • Site Reliability Engineers: “solving the most interesting problems”
    Posted by Chris Reid, Sydney Staffing team I recently sat down with Ben Appleton, a Senior Staff Software Engineer, to talk about his recent...
  • More Google Cluster Data
    Posted by John Wilkes, Principal Software Engineer Google has a strong interest in promoting high quality systems research, and we believe t...
  • Impact of Organic Ranking on Ad Click Incrementality
    Posted by David Chan, Statistician and Lizzy Van Alstine, Research Evangelist  In 2011, Google released a Search Ads Pause research study w...
  • Market Algorithms and Optimization Meeting
    Posted by  Vahab S. Mirrokni and Muthu Muthukrishnan Google auctions ads, and enables a market with millions of advertisers and users.  This...
  • Released Data Set: Features Extracted From YouTube Videos for Multiview Learning
    Posted by Omid Madani, Senior Software Engineer “If it looks like a duck, swims like a duck, and quacks like a duck, then it probably is a ...

Categories

  • accessibility
  • ACL
  • ACM
  • Acoustic Modeling
  • ads
  • adsense
  • adwords
  • Africa
  • Android
  • API
  • App Engine
  • App Inventor
  • Audio
  • Awards
  • Cantonese
  • China
  • Computer Science
  • conference
  • conferences
  • correlate
  • crowd-sourcing
  • CVPR
  • datasets
  • Deep Learning
  • distributed systems
  • Earth Engine
  • economics
  • Education
  • Electronic Commerce and Algorithms
  • EMEA
  • EMNLP
  • entities
  • Exacycle
  • Faculty Institute
  • Faculty Summit
  • Fusion Tables
  • gamification
  • Google Books
  • Google+
  • Government
  • grants
  • HCI
  • Image Annotation
  • Information Retrieval
  • internationalization
  • Interspeech
  • jsm
  • jsm2011
  • K-12
  • Korean
  • Labs
  • localization
  • Machine Hearing
  • Machine Learning
  • Machine Translation
  • MapReduce
  • market algorithms
  • Market Research
  • ML
  • MOOC
  • NAACL
  • Natural Language Processing
  • Networks
  • Ngram
  • NIPS
  • NLP
  • open source
  • operating systems
  • osdi
  • osdi10
  • patents
  • ph.d. fellowship
  • PiLab
  • Policy
  • Public Data Explorer
  • publication
  • Publications
  • renewable energy
  • Research Awards
  • resource optimization
  • Search
  • search ads
  • Security and Privacy
  • SIGMOD
  • Site Reliability Engineering
  • Speech
  • statistics
  • Structured Data
  • Systems
  • Translate
  • trends
  • TV
  • UI
  • University Relations
  • UNIX
  • User Experience
  • video
  • Vision Research
  • Visiting Faculty
  • Visualization
  • Voice Search
  • Wiki
  • wikipedia
  • WWW
  • YouTube

Blog Archive

  • ►  2013 (51)
    • ►  December (3)
    • ►  November (9)
    • ►  October (2)
    • ►  September (5)
    • ►  August (2)
    • ►  July (6)
    • ►  June (7)
    • ►  May (5)
    • ►  April (3)
    • ►  March (4)
    • ►  February (4)
    • ►  January (1)
  • ▼  2012 (59)
    • ►  December (4)
    • ►  October (4)
    • ►  September (3)
    • ►  August (9)
    • ►  July (9)
    • ►  June (7)
    • ►  May (7)
    • ►  April (2)
    • ►  March (7)
    • ▼  February (3)
      • Announcing Google-hosted workshop videos from NIPS...
      • 2011 EMEA Android Educational Outreach Program Awa...
      • Quantifying comedy on YouTube: why the number of o...
    • ►  January (4)
  • ►  2011 (51)
    • ►  December (5)
    • ►  November (2)
    • ►  September (3)
    • ►  August (4)
    • ►  July (9)
    • ►  June (6)
    • ►  May (4)
    • ►  April (4)
    • ►  March (5)
    • ►  February (5)
    • ►  January (4)
  • ►  2010 (44)
    • ►  December (7)
    • ►  November (2)
    • ►  October (9)
    • ►  September (7)
    • ►  August (2)
    • ►  July (7)
    • ►  June (3)
    • ►  May (2)
    • ►  April (1)
    • ►  March (1)
    • ►  February (1)
    • ►  January (2)
  • ►  2009 (44)
    • ►  December (8)
    • ►  November (4)
    • ►  August (4)
    • ►  July (5)
    • ►  June (5)
    • ►  May (4)
    • ►  April (6)
    • ►  March (3)
    • ►  February (1)
    • ►  January (4)
  • ►  2008 (11)
    • ►  December (1)
    • ►  November (1)
    • ►  October (1)
    • ►  September (1)
    • ►  July (1)
    • ►  May (3)
    • ►  April (1)
    • ►  March (1)
    • ►  February (1)
  • ►  2007 (9)
    • ►  October (1)
    • ►  September (2)
    • ►  August (1)
    • ►  July (1)
    • ►  June (2)
    • ►  February (2)
  • ►  2006 (15)
    • ►  December (1)
    • ►  November (1)
    • ►  September (1)
    • ►  August (1)
    • ►  July (1)
    • ►  June (2)
    • ►  April (3)
    • ►  March (4)
    • ►  February (1)
Powered by Blogger.

About Me

Unknown
View my complete profile