Compact System

  • Subscribe to our RSS feed.
  • Twitter
  • StumbleUpon
  • Reddit
  • Facebook
  • Digg

Wednesday, 9 March 2011

Building resources to syntactically parse the web

Posted on 16:00 by Unknown
Posted by Slav Petrov and Ryan McDonald, Research Team

One major hurdle in organizing the world’s information is building computer systems that can understand natural, or human, language. Such understanding would advance if systems could automatically determine syntactic and semantic structures.

This analysis is an extremely complex inferential process. Consider for example the sentence, "A hearing is scheduled on the issue today." A syntactic parser needs to determine that "is scheduled" is a verb phrase, that the "hearing" is its subject, that the prepositional phrase "on the issue" is modifying the "hearing", and that today is an adverb modifying the verb phrase. Of course, humans do this all the time without realizing it. For computers, this is non-trivial as it requires a fair amount of background knowledge, typically encoded in a rich statistical model. Consider, "I saw a man with a jacket" versus "I saw a man with a telescope". In the former, we know that a "jacket" is something that people wear and is not a mechanism for viewing people. So syntactically, the "jacket" must be a property associated with the "man" and not the verb "saw", i.e., I did not see the man by using a jacket to view him. Whereas in the latter, we know that a telescope is something with which we can view people, so it can also be a property of the verb. Of course, it is ambiguous, maybe the man is carrying the telescope.


Linguistically inclined readers will of course notice that this parse tree has been simplified by omitting empty clauses and traces.

Computer programs with the ability to analyze the syntactic structure of language are fundamental to improving the quality of many tools millions of people use every day, including machine translation, question answering, information extraction, and sentiment analysis. Google itself is already using syntactic parsers in many of its projects. For example, this paper, describes a system where a syntactic dependency parser is used to make translations more grammatical between languages with different word orderings. This paper uses the output of a syntactic parser to help determine the scope of negation within sentences, which is then used downstream to improve a sentiment analysis system.

To further this work, Google is pleased to announce a gift to the Linguistic Data Consortium (LDC) to create new annotated resources that can facilitate research progress in the area of syntactic parsing. The primary purpose of the gift is to generate data sets that language technology researchers can use to evaluate the robustness of new parsing methods in several web domains, such as blogs and discussion forums. The goal is to move parsing beyond its current focus on carefully edited text such as print news (for which annotated resources already exist) to domains with larger stylistic and topical variability (where spelling errors and grammatical mistakes are more common).

The Linguistic Data Consortium is a non-profit organization that produces and distributes linguistic data to researchers, technology developers, universities and university libraries. The LDC is hosted by the University of Pennsylvania and directed by Mark Liberman, Christopher H. Browne Distinguished Professor of Linguistics.

The LDC is the leader in building linguistic data resources and will annotate several thousand sentences with syntactic parse trees like the one shown in the figure. The annotation will be done manually by specially trained linguists who will also have access to machine analysis and can correct errors the systems make. Once the annotation is completed, the corpus will be released to the research community through the LDC catalog. We look forward to seeing what they produce and what the natural language processing research community can do with the rich annotation resource.
Email ThisBlogThis!Share to XShare to Facebook
Posted in Natural Language Processing | No comments
Newer Post Older Post Home

0 comments:

Post a Comment

Subscribe to: Post Comments (Atom)

Popular Posts

  • CDC Birth Vital Statistics in BigQuery
    Posted by Dan Vanderkam, Software Engineer Google’s BigQuery Service lets enterprises and developers crunch large-scale data sets quickly...
  • Our Unique Approach to Research
    Posted by  Alfred Spector , Vice President of Research and Special Initiatives Google started as a research project —and research has remain...
  • Google, the World Wide Web and WWW conference: years of progress, prosperity and innovation
    Posted by Prabhakar Raghavan, Vice President of Engineering More than forty members of Google’s technical staff gathered in Lyon, France i...
  • Partnering with Tsinghua University to support education in Western China
    Posted by Aimin Zhu, China University Relations We’re excited to announce that we’ve teamed up with Tsinghua University to provide educatio...
  • Our Faculty Institute brings faculty back to the drawing board
    Posted by Nina Kim Schultz, Google Education Research Cross-posted with the Official Google Blog School may still be out for summer, but tea...
  • Site Reliability Engineers: “solving the most interesting problems”
    Posted by Chris Reid, Sydney Staffing team I recently sat down with Ben Appleton, a Senior Staff Software Engineer, to talk about his recent...
  • More Google Cluster Data
    Posted by John Wilkes, Principal Software Engineer Google has a strong interest in promoting high quality systems research, and we believe t...
  • Impact of Organic Ranking on Ad Click Incrementality
    Posted by David Chan, Statistician and Lizzy Van Alstine, Research Evangelist  In 2011, Google released a Search Ads Pause research study w...
  • Market Algorithms and Optimization Meeting
    Posted by  Vahab S. Mirrokni and Muthu Muthukrishnan Google auctions ads, and enables a market with millions of advertisers and users.  This...
  • Released Data Set: Features Extracted From YouTube Videos for Multiview Learning
    Posted by Omid Madani, Senior Software Engineer “If it looks like a duck, swims like a duck, and quacks like a duck, then it probably is a ...

Categories

  • accessibility
  • ACL
  • ACM
  • Acoustic Modeling
  • ads
  • adsense
  • adwords
  • Africa
  • Android
  • API
  • App Engine
  • App Inventor
  • Audio
  • Awards
  • Cantonese
  • China
  • Computer Science
  • conference
  • conferences
  • correlate
  • crowd-sourcing
  • CVPR
  • datasets
  • Deep Learning
  • distributed systems
  • Earth Engine
  • economics
  • Education
  • Electronic Commerce and Algorithms
  • EMEA
  • EMNLP
  • entities
  • Exacycle
  • Faculty Institute
  • Faculty Summit
  • Fusion Tables
  • gamification
  • Google Books
  • Google+
  • Government
  • grants
  • HCI
  • Image Annotation
  • Information Retrieval
  • internationalization
  • Interspeech
  • jsm
  • jsm2011
  • K-12
  • Korean
  • Labs
  • localization
  • Machine Hearing
  • Machine Learning
  • Machine Translation
  • MapReduce
  • market algorithms
  • Market Research
  • ML
  • MOOC
  • NAACL
  • Natural Language Processing
  • Networks
  • Ngram
  • NIPS
  • NLP
  • open source
  • operating systems
  • osdi
  • osdi10
  • patents
  • ph.d. fellowship
  • PiLab
  • Policy
  • Public Data Explorer
  • publication
  • Publications
  • renewable energy
  • Research Awards
  • resource optimization
  • Search
  • search ads
  • Security and Privacy
  • SIGMOD
  • Site Reliability Engineering
  • Speech
  • statistics
  • Structured Data
  • Systems
  • Translate
  • trends
  • TV
  • UI
  • University Relations
  • UNIX
  • User Experience
  • video
  • Vision Research
  • Visiting Faculty
  • Visualization
  • Voice Search
  • Wiki
  • wikipedia
  • WWW
  • YouTube

Blog Archive

  • ►  2013 (51)
    • ►  December (3)
    • ►  November (9)
    • ►  October (2)
    • ►  September (5)
    • ►  August (2)
    • ►  July (6)
    • ►  June (7)
    • ►  May (5)
    • ►  April (3)
    • ►  March (4)
    • ►  February (4)
    • ►  January (1)
  • ►  2012 (59)
    • ►  December (4)
    • ►  October (4)
    • ►  September (3)
    • ►  August (9)
    • ►  July (9)
    • ►  June (7)
    • ►  May (7)
    • ►  April (2)
    • ►  March (7)
    • ►  February (3)
    • ►  January (4)
  • ▼  2011 (51)
    • ►  December (5)
    • ►  November (2)
    • ►  September (3)
    • ►  August (4)
    • ►  July (9)
    • ►  June (6)
    • ►  May (4)
    • ►  April (4)
    • ▼  March (5)
      • Word of Mouth: Introducing Voice Search for Indone...
      • Reading tea leaves in the tourism industry: A Case...
      • Games, auctions and beyond
      • Large Scale Image Annotation: Learning to Rank wit...
      • Building resources to syntactically parse the web
    • ►  February (5)
    • ►  January (4)
  • ►  2010 (44)
    • ►  December (7)
    • ►  November (2)
    • ►  October (9)
    • ►  September (7)
    • ►  August (2)
    • ►  July (7)
    • ►  June (3)
    • ►  May (2)
    • ►  April (1)
    • ►  March (1)
    • ►  February (1)
    • ►  January (2)
  • ►  2009 (44)
    • ►  December (8)
    • ►  November (4)
    • ►  August (4)
    • ►  July (5)
    • ►  June (5)
    • ►  May (4)
    • ►  April (6)
    • ►  March (3)
    • ►  February (1)
    • ►  January (4)
  • ►  2008 (11)
    • ►  December (1)
    • ►  November (1)
    • ►  October (1)
    • ►  September (1)
    • ►  July (1)
    • ►  May (3)
    • ►  April (1)
    • ►  March (1)
    • ►  February (1)
  • ►  2007 (9)
    • ►  October (1)
    • ►  September (2)
    • ►  August (1)
    • ►  July (1)
    • ►  June (2)
    • ►  February (2)
  • ►  2006 (15)
    • ►  December (1)
    • ►  November (1)
    • ►  September (1)
    • ►  August (1)
    • ►  July (1)
    • ►  June (2)
    • ►  April (3)
    • ►  March (4)
    • ►  February (1)
Powered by Blogger.

About Me

Unknown
View my complete profile