Compact System

  • Subscribe to our RSS feed.
  • Twitter
  • StumbleUpon
  • Reddit
  • Facebook
  • Digg

Tuesday, 8 December 2009

Machine Learning with Quantum Algorithms

Posted on 09:00 by Unknown
Posted by Hartmut Neven, Technical Lead Manager Image Recognition

Many Google services we offer depend on sophisticated artificial intelligence technologies such as machine learning or pattern recognition. If one takes a closer look at such capabilities one realizes that they often require the solution of what mathematicians call hard combinatorial optimization problems. It turns out that solving the hardest of such problems requires server farms so large that they can never be built.

A new type of machine, a so-called quantum computer, can help here. Quantum computers take advantage of the laws of quantum physics to provide new computational capabilities. While quantum mechanics has been foundational to the theories of physics for about a hundred years the picture of reality it paints remains enigmatic. This is largely because at the scale of our every day experience quantum effects are vanishingly small and can usually not be observed directly. Consequently, quantum computers astonish us with their abilities. Let’s take unstructured search as an example. Assume I hide a ball in a cabinet with a million drawers. How many drawers do you have to open to find the ball? Sometimes you may get lucky and find the ball in the first few drawers but at other times you have to inspect almost all of them. So on average it will take you 500,000 peeks to find the ball. Now a quantum computer can perform such a search looking only into 1000 drawers. This mind boggling feat is known as Grover’s algorithm.

Over the past three years a team at Google has studied how problems such as recognizing an object in an image or learning to make an optimal decision based on example data can be made amenable to solution by quantum algorithms. The algorithms we employ are the quantum adiabatic algorithms discovered by Edward Farhi and collaborators at MIT. These algorithms promise to find higher quality solutions for optimization problems than obtainable with classical solvers.

On the hardware side we are collaborating with D-Wave in Vancouver, Canada. D-Wave develops processors that realize the adiabatic quantum algorithm by magnetically coupling superconducting loops called rf-squid flux qubits. This design realizes what is known as the Ising model which represents the simplest model for an interacting many-body system and it can be manufactured using proven chip fabrication methods. Unfortunately, it is not easy to demonstrate that a multi-qubit system such as the D-Wave chip indeed exhibits the desired quantum behavior and experimental physicists from various institutions are still in the process of characterizing the chip.


Layout of the qubits in the C4 Chimera chip employed to train the car detector. The irregular graph structure results from the fabrication process not yet rendering all qubits functional.

Today, at the Neural Information Processing Systems conference (NIPS 2009), we show the progress we have made. We demonstrate a detector that has learned to spot cars by looking at example pictures. It was trained with adiabatic quantum optimization using a D-Wave C4 Chimera chip. There are still many open questions but in our experiments we observed that this detector performs better than those we had trained using classical solvers running on the computers we have in our data centers today. Besides progress in engineering synthetic intelligence we hope that improved mastery of quantum computing will also increase our appreciation for the structure of reality as described by the laws of quantum physics.

The theory paper on which the demonstration is based can be found on the arXiv and a report describing the details of the implementation is here.
Email ThisBlogThis!Share to XShare to Facebook
Posted in | No comments
Newer Post Older Post Home

0 comments:

Post a Comment

Subscribe to: Post Comments (Atom)

Popular Posts

  • CDC Birth Vital Statistics in BigQuery
    Posted by Dan Vanderkam, Software Engineer Google’s BigQuery Service lets enterprises and developers crunch large-scale data sets quickly...
  • Towards Energy-Proportional Datacenters
    Posted by Dennis Abts, Michael R. Marty, Philip M. Wells, Peter Klausler, and Hong Liu This is part of the series highlighting some notable...
  • Site Reliability Engineers: “solving the most interesting problems”
    Posted by Chris Reid, Sydney Staffing team I recently sat down with Ben Appleton, a Senior Staff Software Engineer, to talk about his recent...
  • Our Faculty Institute brings faculty back to the drawing board
    Posted by Nina Kim Schultz, Google Education Research Cross-posted with the Official Google Blog School may still be out for summer, but tea...
  • Market Algorithms and Optimization Meeting
    Posted by  Vahab S. Mirrokni and Muthu Muthukrishnan Google auctions ads, and enables a market with millions of advertisers and users.  This...
  • Our Unique Approach to Research
    Posted by  Alfred Spector , Vice President of Research and Special Initiatives Google started as a research project —and research has remain...
  • Impact of Organic Ranking on Ad Click Incrementality
    Posted by David Chan, Statistician and Lizzy Van Alstine, Research Evangelist  In 2011, Google released a Search Ads Pause research study w...
  • Large-scale graph computing at Google
    Posted by Grzegorz Czajkowski, Systems Infrastructure Team If you squint the right way, you will notice that graphs are everywhere. For exam...
  • Continuing the quest for future computer scientists with CS4HS
    Erin Mindell, Program Manager, Google Education Computer Science for High School (CS4HS) began five years ago with a simple question: How c...
  • Millions of Core-Hours Awarded to Science
    Posted by Andrea Held, Program Manager, University Relations In 2011 Google University Relations launched a new academic research awards pr...

Categories

  • accessibility
  • ACL
  • ACM
  • Acoustic Modeling
  • ads
  • adsense
  • adwords
  • Africa
  • Android
  • API
  • App Engine
  • App Inventor
  • Audio
  • Awards
  • Cantonese
  • China
  • Computer Science
  • conference
  • conferences
  • correlate
  • crowd-sourcing
  • CVPR
  • datasets
  • Deep Learning
  • distributed systems
  • Earth Engine
  • economics
  • Education
  • Electronic Commerce and Algorithms
  • EMEA
  • EMNLP
  • entities
  • Exacycle
  • Faculty Institute
  • Faculty Summit
  • Fusion Tables
  • gamification
  • Google Books
  • Google+
  • Government
  • grants
  • HCI
  • Image Annotation
  • Information Retrieval
  • internationalization
  • Interspeech
  • jsm
  • jsm2011
  • K-12
  • Korean
  • Labs
  • localization
  • Machine Hearing
  • Machine Learning
  • Machine Translation
  • MapReduce
  • market algorithms
  • Market Research
  • ML
  • MOOC
  • NAACL
  • Natural Language Processing
  • Networks
  • Ngram
  • NIPS
  • NLP
  • open source
  • operating systems
  • osdi
  • osdi10
  • patents
  • ph.d. fellowship
  • PiLab
  • Policy
  • Public Data Explorer
  • publication
  • Publications
  • renewable energy
  • Research Awards
  • resource optimization
  • Search
  • search ads
  • Security and Privacy
  • SIGMOD
  • Site Reliability Engineering
  • Speech
  • statistics
  • Structured Data
  • Systems
  • Translate
  • trends
  • TV
  • UI
  • University Relations
  • UNIX
  • User Experience
  • video
  • Vision Research
  • Visiting Faculty
  • Visualization
  • Voice Search
  • Wiki
  • wikipedia
  • WWW
  • YouTube

Blog Archive

  • ►  2013 (51)
    • ►  December (3)
    • ►  November (9)
    • ►  October (2)
    • ►  September (5)
    • ►  August (2)
    • ►  July (6)
    • ►  June (7)
    • ►  May (5)
    • ►  April (3)
    • ►  March (4)
    • ►  February (4)
    • ►  January (1)
  • ►  2012 (59)
    • ►  December (4)
    • ►  October (4)
    • ►  September (3)
    • ►  August (9)
    • ►  July (9)
    • ►  June (7)
    • ►  May (7)
    • ►  April (2)
    • ►  March (7)
    • ►  February (3)
    • ►  January (4)
  • ►  2011 (51)
    • ►  December (5)
    • ►  November (2)
    • ►  September (3)
    • ►  August (4)
    • ►  July (9)
    • ►  June (6)
    • ►  May (4)
    • ►  April (4)
    • ►  March (5)
    • ►  February (5)
    • ►  January (4)
  • ►  2010 (44)
    • ►  December (7)
    • ►  November (2)
    • ►  October (9)
    • ►  September (7)
    • ►  August (2)
    • ►  July (7)
    • ►  June (3)
    • ►  May (2)
    • ►  April (1)
    • ►  March (1)
    • ►  February (1)
    • ►  January (2)
  • ▼  2009 (44)
    • ▼  December (8)
      • Announcing our Q4 Research Awards
      • Teaching a Computer to Understand Japanese
      • Research Areas of Interest - Multimedia
      • Machine Learning with Quantum Algorithms
      • Celebrating Computer Science Education Week
      • Join us for the 2010 Google GRAD CS Forum!
      • Automatic Captioning in YouTube
      • Four Googlers elected ACM Fellows
    • ►  November (4)
    • ►  August (4)
    • ►  July (5)
    • ►  June (5)
    • ►  May (4)
    • ►  April (6)
    • ►  March (3)
    • ►  February (1)
    • ►  January (4)
  • ►  2008 (11)
    • ►  December (1)
    • ►  November (1)
    • ►  October (1)
    • ►  September (1)
    • ►  July (1)
    • ►  May (3)
    • ►  April (1)
    • ►  March (1)
    • ►  February (1)
  • ►  2007 (9)
    • ►  October (1)
    • ►  September (2)
    • ►  August (1)
    • ►  July (1)
    • ►  June (2)
    • ►  February (2)
  • ►  2006 (15)
    • ►  December (1)
    • ►  November (1)
    • ►  September (1)
    • ►  August (1)
    • ►  July (1)
    • ►  June (2)
    • ►  April (3)
    • ►  March (4)
    • ►  February (1)
Powered by Blogger.

About Me

Unknown
View my complete profile