Compact System

  • Subscribe to our RSS feed.
  • Twitter
  • StumbleUpon
  • Reddit
  • Facebook
  • Digg

Tuesday, 8 December 2009

Machine Learning with Quantum Algorithms

Posted on 09:00 by Unknown
Posted by Hartmut Neven, Technical Lead Manager Image Recognition

Many Google services we offer depend on sophisticated artificial intelligence technologies such as machine learning or pattern recognition. If one takes a closer look at such capabilities one realizes that they often require the solution of what mathematicians call hard combinatorial optimization problems. It turns out that solving the hardest of such problems requires server farms so large that they can never be built.

A new type of machine, a so-called quantum computer, can help here. Quantum computers take advantage of the laws of quantum physics to provide new computational capabilities. While quantum mechanics has been foundational to the theories of physics for about a hundred years the picture of reality it paints remains enigmatic. This is largely because at the scale of our every day experience quantum effects are vanishingly small and can usually not be observed directly. Consequently, quantum computers astonish us with their abilities. Let’s take unstructured search as an example. Assume I hide a ball in a cabinet with a million drawers. How many drawers do you have to open to find the ball? Sometimes you may get lucky and find the ball in the first few drawers but at other times you have to inspect almost all of them. So on average it will take you 500,000 peeks to find the ball. Now a quantum computer can perform such a search looking only into 1000 drawers. This mind boggling feat is known as Grover’s algorithm.

Over the past three years a team at Google has studied how problems such as recognizing an object in an image or learning to make an optimal decision based on example data can be made amenable to solution by quantum algorithms. The algorithms we employ are the quantum adiabatic algorithms discovered by Edward Farhi and collaborators at MIT. These algorithms promise to find higher quality solutions for optimization problems than obtainable with classical solvers.

On the hardware side we are collaborating with D-Wave in Vancouver, Canada. D-Wave develops processors that realize the adiabatic quantum algorithm by magnetically coupling superconducting loops called rf-squid flux qubits. This design realizes what is known as the Ising model which represents the simplest model for an interacting many-body system and it can be manufactured using proven chip fabrication methods. Unfortunately, it is not easy to demonstrate that a multi-qubit system such as the D-Wave chip indeed exhibits the desired quantum behavior and experimental physicists from various institutions are still in the process of characterizing the chip.


Layout of the qubits in the C4 Chimera chip employed to train the car detector. The irregular graph structure results from the fabrication process not yet rendering all qubits functional.

Today, at the Neural Information Processing Systems conference (NIPS 2009), we show the progress we have made. We demonstrate a detector that has learned to spot cars by looking at example pictures. It was trained with adiabatic quantum optimization using a D-Wave C4 Chimera chip. There are still many open questions but in our experiments we observed that this detector performs better than those we had trained using classical solvers running on the computers we have in our data centers today. Besides progress in engineering synthetic intelligence we hope that improved mastery of quantum computing will also increase our appreciation for the structure of reality as described by the laws of quantum physics.

The theory paper on which the demonstration is based can be found on the arXiv and a report describing the details of the implementation is here.
Email ThisBlogThis!Share to XShare to Facebook
Posted in | No comments
Newer Post Older Post Home

0 comments:

Post a Comment

Subscribe to: Post Comments (Atom)

Popular Posts

  • New research from Google shows that 88% of the traffic generated by mobile search ads is not replaced by traffic originating from mobile organic search
    Posted by Shaun Lysen, Statistician at Google Often times people are presented with two choices after making a search on their devices - the...
  • Education Awards on Google App Engine
    Posted by Andrea Held, Google University Relations Cross-posted with Google Developers Blog Last year we invited proposals for innovative p...
  • More researchers dive into the digital humanities
    Posted by Jon Orwant, Engineering Manager for Google Books When we started Google Book Search back in 2004, we were driven by the desire to...
  • Google, the World Wide Web and WWW conference: years of progress, prosperity and innovation
    Posted by Prabhakar Raghavan, Vice President of Engineering More than forty members of Google’s technical staff gathered in Lyon, France i...
  • Query Language Modeling for Voice Search
    Posted by Ciprian Chelba, Research Scientist About three years ago we set a goal to enable speaking to the Google Search engine on smart-pho...
  • Announcing our Q4 Research Awards
    Posted by Maggie Johnson, Director of Education & University Relations and Jeff Walz, Head of University Relations We do a significant a...
  • Word of Mouth: Introducing Voice Search for Indonesian, Malaysian and Latin American Spanish
    Posted by Linne Ha, International Program Manager Read more about the launch of Voice Search in Latin American Spanish on the Google América...
  • Under the Hood of App Inventor for Android
    Posted by Bill Magnuson, Hal Abelson, and Mark Friedman We recently announced our App Inventor for Android project on the Google Research B...
  • Make Your Websites More Accessible to More Users with Introduction to Web Accessibility
    Eve Andersson, Manager, Accessibility Engineering Cross-posted with  Google Developer's Blog You work hard to build clean, intuitive web...
  • 11 Billion Clues in 800 Million Documents: A Web Research Corpus Annotated with Freebase Concepts
    Posted by Dave Orr, Amar Subramanya, Evgeniy Gabrilovich, and Michael Ringgaard, Google Research “I assume that by knowing the truth you mea...

Categories

  • accessibility
  • ACL
  • ACM
  • Acoustic Modeling
  • ads
  • adsense
  • adwords
  • Africa
  • Android
  • API
  • App Engine
  • App Inventor
  • Audio
  • Awards
  • Cantonese
  • China
  • Computer Science
  • conference
  • conferences
  • correlate
  • crowd-sourcing
  • CVPR
  • datasets
  • Deep Learning
  • distributed systems
  • Earth Engine
  • economics
  • Education
  • Electronic Commerce and Algorithms
  • EMEA
  • EMNLP
  • entities
  • Exacycle
  • Faculty Institute
  • Faculty Summit
  • Fusion Tables
  • gamification
  • Google Books
  • Google+
  • Government
  • grants
  • HCI
  • Image Annotation
  • Information Retrieval
  • internationalization
  • Interspeech
  • jsm
  • jsm2011
  • K-12
  • Korean
  • Labs
  • localization
  • Machine Hearing
  • Machine Learning
  • Machine Translation
  • MapReduce
  • market algorithms
  • Market Research
  • ML
  • MOOC
  • NAACL
  • Natural Language Processing
  • Networks
  • Ngram
  • NIPS
  • NLP
  • open source
  • operating systems
  • osdi
  • osdi10
  • patents
  • ph.d. fellowship
  • PiLab
  • Policy
  • Public Data Explorer
  • publication
  • Publications
  • renewable energy
  • Research Awards
  • resource optimization
  • Search
  • search ads
  • Security and Privacy
  • SIGMOD
  • Site Reliability Engineering
  • Speech
  • statistics
  • Structured Data
  • Systems
  • Translate
  • trends
  • TV
  • UI
  • University Relations
  • UNIX
  • User Experience
  • video
  • Vision Research
  • Visiting Faculty
  • Visualization
  • Voice Search
  • Wiki
  • wikipedia
  • WWW
  • YouTube

Blog Archive

  • ►  2013 (51)
    • ►  December (3)
    • ►  November (9)
    • ►  October (2)
    • ►  September (5)
    • ►  August (2)
    • ►  July (6)
    • ►  June (7)
    • ►  May (5)
    • ►  April (3)
    • ►  March (4)
    • ►  February (4)
    • ►  January (1)
  • ►  2012 (59)
    • ►  December (4)
    • ►  October (4)
    • ►  September (3)
    • ►  August (9)
    • ►  July (9)
    • ►  June (7)
    • ►  May (7)
    • ►  April (2)
    • ►  March (7)
    • ►  February (3)
    • ►  January (4)
  • ►  2011 (51)
    • ►  December (5)
    • ►  November (2)
    • ►  September (3)
    • ►  August (4)
    • ►  July (9)
    • ►  June (6)
    • ►  May (4)
    • ►  April (4)
    • ►  March (5)
    • ►  February (5)
    • ►  January (4)
  • ►  2010 (44)
    • ►  December (7)
    • ►  November (2)
    • ►  October (9)
    • ►  September (7)
    • ►  August (2)
    • ►  July (7)
    • ►  June (3)
    • ►  May (2)
    • ►  April (1)
    • ►  March (1)
    • ►  February (1)
    • ►  January (2)
  • ▼  2009 (44)
    • ▼  December (8)
      • Announcing our Q4 Research Awards
      • Teaching a Computer to Understand Japanese
      • Research Areas of Interest - Multimedia
      • Machine Learning with Quantum Algorithms
      • Celebrating Computer Science Education Week
      • Join us for the 2010 Google GRAD CS Forum!
      • Automatic Captioning in YouTube
      • Four Googlers elected ACM Fellows
    • ►  November (4)
    • ►  August (4)
    • ►  July (5)
    • ►  June (5)
    • ►  May (4)
    • ►  April (6)
    • ►  March (3)
    • ►  February (1)
    • ►  January (4)
  • ►  2008 (11)
    • ►  December (1)
    • ►  November (1)
    • ►  October (1)
    • ►  September (1)
    • ►  July (1)
    • ►  May (3)
    • ►  April (1)
    • ►  March (1)
    • ►  February (1)
  • ►  2007 (9)
    • ►  October (1)
    • ►  September (2)
    • ►  August (1)
    • ►  July (1)
    • ►  June (2)
    • ►  February (2)
  • ►  2006 (15)
    • ►  December (1)
    • ►  November (1)
    • ►  September (1)
    • ►  August (1)
    • ►  July (1)
    • ►  June (2)
    • ►  April (3)
    • ►  March (4)
    • ►  February (1)
Powered by Blogger.

About Me

Unknown
View my complete profile