Compact System

  • Subscribe to our RSS feed.
  • Twitter
  • StumbleUpon
  • Reddit
  • Facebook
  • Digg

Wednesday, 3 March 2010

Hopping on a Face Manifold via People Hopper

Posted on 16:00 by Unknown
Posted by Sanjiv Kumar and Henry Rowley, Google Research

A few weeks ago we announced the launch of a new orkut application in Google Labs called People Hopper that lets you take your profile image and "morph" it into a friend's photo, using publicly available images from other orkut users along the way. No computer graphics tricks are used; every image along the transition comes from real orkut users.



The application hops across millions of public user images in orkut so that one image is smoothly transformed into another. First, faces are automatically detected in public profile images and normalized in contrast and size. Then, for each image, we find other public profile images that are similar to it. Finally, when you pick two faces, we just hop between similar public images, step-by-step, until the connection is made.

People Hopper was outcome of the following research question: Is it possible to learn a low-dimensional space (i.e. a manifold) in which all the human face images live? It is well-known in the machine learning community that to recover the true underlying manifold one needs a large number of samples from it. In 2008, we published a paper at CVPR in which we learned a face manifold using tens of millions of images, which is still the largest scale manifold learning study to date.

To be able to do manifold learning at such a large scale, we had to address two key issues: First, how to do nearest neighbor search in very large databases? We used spill-trees to speed up the search to construct the neighborhood graph. Second, how to do spectral decomposition of matrices which are hundreds of terabytes in size? We investigated sampling-based matrix decomposition methods to handle such matrices.

One way to visualize the quality of the manifold is to find shortest paths between pairs of faces in the manifold, and observe the smoothness of the transitions between them. This is exactly what People Hopper does. Curious? Try People Hopper on orkut now!

The quality of the face manifold depends on three main factors: the number of faces in the manifold, the appearances of those faces, and the similarity measure used for image matching. Since we cannot control the number or appearance of the faces in orkut profiles, it may happen that for a particular image there exists no visually similar image in the database. We plan to update our graph over public profile images frequently, so the quality of paths will change as users join orkut or update their profile images. Finding better contrast normalization and similarity measures is a topic of continuing research. Currently we don't use any face-specific features during this process, just simple image distances.

We are eager to hear your feedback on how we can make this application more fun and useful. Also, if for any reason you would prefer your profile image not to appear in any People Hopper path, you can choose to opt out by visiting our People Hopper homepage.
Read More
Posted in | No comments
Newer Posts Older Posts Home
Subscribe to: Comments (Atom)

Popular Posts

  • Towards Energy-Proportional Datacenters
    Posted by Dennis Abts, Michael R. Marty, Philip M. Wells, Peter Klausler, and Hong Liu This is part of the series highlighting some notable...
  • CDC Birth Vital Statistics in BigQuery
    Posted by Dan Vanderkam, Software Engineer Google’s BigQuery Service lets enterprises and developers crunch large-scale data sets quickly...
  • Market Algorithms and Optimization Meeting
    Posted by  Vahab S. Mirrokni and Muthu Muthukrishnan Google auctions ads, and enables a market with millions of advertisers and users.  This...
  • International Conference on Machine Learning (ICML 2009) in Montreal
    Posted by Eyal Even Dar and Vahab Mirrokni , Google Research, NY The 26th International Conference on Machine Learning ( ICML 2009 ) was re...
  • Site Reliability Engineers: “solving the most interesting problems”
    Posted by Chris Reid, Sydney Staffing team I recently sat down with Ben Appleton, a Senior Staff Software Engineer, to talk about his recent...
  • Two Views from the 2009 Google Faculty Summit
    Posted by Alfred Spector, Vice President of Research and Special Initiatives [cross-posted with the Official Google Blog ] We held our fifth...
  • Focusing on Our Users: The Google Health Redesign
    Posted by Hendrik Mueller, User Experience Researcher When I relocated to New York City a few years ago, some of the most important health i...
  • Supporting computer science education with CS4HS
    Posted by Terry Ednacot, Education Program Manager Recent statistics have shown a decline in the number of U.S. students taking computer sc...
  • Large-scale graph computing at Google
    Posted by Grzegorz Czajkowski, Systems Infrastructure Team If you squint the right way, you will notice that graphs are everywhere. For exam...
  • Our Faculty Institute brings faculty back to the drawing board
    Posted by Nina Kim Schultz, Google Education Research Cross-posted with the Official Google Blog School may still be out for summer, but tea...

Categories

  • accessibility
  • ACL
  • ACM
  • Acoustic Modeling
  • ads
  • adsense
  • adwords
  • Africa
  • Android
  • API
  • App Engine
  • App Inventor
  • Audio
  • Awards
  • Cantonese
  • China
  • Computer Science
  • conference
  • conferences
  • correlate
  • crowd-sourcing
  • CVPR
  • datasets
  • Deep Learning
  • distributed systems
  • Earth Engine
  • economics
  • Education
  • Electronic Commerce and Algorithms
  • EMEA
  • EMNLP
  • entities
  • Exacycle
  • Faculty Institute
  • Faculty Summit
  • Fusion Tables
  • gamification
  • Google Books
  • Google+
  • Government
  • grants
  • HCI
  • Image Annotation
  • Information Retrieval
  • internationalization
  • Interspeech
  • jsm
  • jsm2011
  • K-12
  • Korean
  • Labs
  • localization
  • Machine Hearing
  • Machine Learning
  • Machine Translation
  • MapReduce
  • market algorithms
  • Market Research
  • ML
  • MOOC
  • NAACL
  • Natural Language Processing
  • Networks
  • Ngram
  • NIPS
  • NLP
  • open source
  • operating systems
  • osdi
  • osdi10
  • patents
  • ph.d. fellowship
  • PiLab
  • Policy
  • Public Data Explorer
  • publication
  • Publications
  • renewable energy
  • Research Awards
  • resource optimization
  • Search
  • search ads
  • Security and Privacy
  • SIGMOD
  • Site Reliability Engineering
  • Speech
  • statistics
  • Structured Data
  • Systems
  • Translate
  • trends
  • TV
  • UI
  • University Relations
  • UNIX
  • User Experience
  • video
  • Vision Research
  • Visiting Faculty
  • Visualization
  • Voice Search
  • Wiki
  • wikipedia
  • WWW
  • YouTube

Blog Archive

  • ►  2013 (51)
    • ►  December (3)
    • ►  November (9)
    • ►  October (2)
    • ►  September (5)
    • ►  August (2)
    • ►  July (6)
    • ►  June (7)
    • ►  May (5)
    • ►  April (3)
    • ►  March (4)
    • ►  February (4)
    • ►  January (1)
  • ►  2012 (59)
    • ►  December (4)
    • ►  October (4)
    • ►  September (3)
    • ►  August (9)
    • ►  July (9)
    • ►  June (7)
    • ►  May (7)
    • ►  April (2)
    • ►  March (7)
    • ►  February (3)
    • ►  January (4)
  • ►  2011 (51)
    • ►  December (5)
    • ►  November (2)
    • ►  September (3)
    • ►  August (4)
    • ►  July (9)
    • ►  June (6)
    • ►  May (4)
    • ►  April (4)
    • ►  March (5)
    • ►  February (5)
    • ►  January (4)
  • ▼  2010 (44)
    • ►  December (7)
    • ►  November (2)
    • ►  October (9)
    • ►  September (7)
    • ►  August (2)
    • ►  July (7)
    • ►  June (3)
    • ►  May (2)
    • ►  April (1)
    • ▼  March (1)
      • Hopping on a Face Manifold via People Hopper
    • ►  February (1)
    • ►  January (2)
  • ►  2009 (44)
    • ►  December (8)
    • ►  November (4)
    • ►  August (4)
    • ►  July (5)
    • ►  June (5)
    • ►  May (4)
    • ►  April (6)
    • ►  March (3)
    • ►  February (1)
    • ►  January (4)
  • ►  2008 (11)
    • ►  December (1)
    • ►  November (1)
    • ►  October (1)
    • ►  September (1)
    • ►  July (1)
    • ►  May (3)
    • ►  April (1)
    • ►  March (1)
    • ►  February (1)
  • ►  2007 (9)
    • ►  October (1)
    • ►  September (2)
    • ►  August (1)
    • ►  July (1)
    • ►  June (2)
    • ►  February (2)
  • ►  2006 (15)
    • ►  December (1)
    • ►  November (1)
    • ►  September (1)
    • ►  August (1)
    • ►  July (1)
    • ►  June (2)
    • ►  April (3)
    • ►  March (4)
    • ►  February (1)
Powered by Blogger.

About Me

Unknown
View my complete profile